首页 » 漏洞 » 代码这样写更优雅(Python 版)

代码这样写更优雅(Python 版)

 
文章目录

题图:unsplash.com

Python 这门语言最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。但有时候我们写代码,特别是 Python 初学者,往往还是按照其它语言的思维习惯来写,那样的写法不仅运行速度慢,代码读起来也费尽,给人一种拖泥带水的感觉,过段时间连自己也读不懂。

《计算机程序的构造和解释》的作者哈尔·阿伯尔森曾这样说:“Programs must be written for people to read, and only incidentally for machines to execute.”

要写出 Pythonic(优雅的、地道的、整洁的)代码,还要平时多观察那些大牛代码,Github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,笔者列举一些常见的 Pythonic 写法,希望能给你带来一点启迪。

1、变量交换

大部分编程语言中交换两个变量的值时,不得不引入一个临时变量:

>>> a = 1 >>> b = 2 >>> tmp = a >>> a = b >>> b = tmp

pythonic

>>> a, b = b, a

2、循环遍历区间元素

for i in [0, 1, 2, 3, 4, 5]:     print i2 # 或者 for i in range(6):     print i2

pythonic

for i in xrange(6):     print i2

xrange 返回的是生成器对象,生成器比列表更加节省内存,不过需要注意的是 xrange 是 python2 中的写法,python3 只有 range 方法,特点和 xrange 是一样的。

3、带有索引位置的集合遍历

遍历集合时如果需要使用到集合的索引位置时,直接对集合迭代是没有索引信息的,普通的方式使用:

colors = ['red', 'green', 'blue', 'yellow']  for i in range(len(colors)):     print i, '--->', colors[i]

pythonic

for i, color in enumerate(colors):     print i, '--->', color

4、字符串连接

字符串连接时,普通的方式可以用 + 操作

names = ['raymond', 'rachel', 'matthew', 'roger',          'betty', 'melissa', 'judith', 'charlie']  s = names[0] for name in names[1:]:     s += ', ' + name print s

pythonic

print ', '.join(names)

join 是一种更加高效的字符串连接方式,使用 + 操作时,每执行一次 + 操作就会导致在内存中生成一个新的字符串对象,遍历8次有8个字符串生成,造成无谓的内存浪费。而用 join 方法整个过程只会产生一个字符串对象。

5、打开/关闭文件

执行文件操作时,最后一定不能忘记的操作是关闭文件,即使报错了也要 close。普通的方式是在 finnally 块中显示的调用 close 方法。

f = open('data.txt') try:     data = f.read() finally:     f.close()

pythonic

with open('data.txt') as f:     data = f.read()

使用 with 语句,系统会在执行完文件操作后自动关闭文件对象。

6、列表推导式

能够用一行代码简明扼要地解决问题时,绝不要用两行,比如

result = [] for i in range(10):     s = i  2     result.append(s)

pythonic

[i2 for i in xrange(10)]

与之类似的还有生成器表达式、字典推导式,都是很 pythonic 的写法。

7、善用装饰器

装饰器可以把与业务逻辑无关的代码抽离出来,让代码保持干净清爽,而且装饰器还能被多个地方重复利用。比如一个爬虫网页的函数,如果该 URL 曾经被爬过就直接从缓存中获取,否则爬下来之后加入到缓存,防止后续重复爬取。

def web_lookup(url, saved={}):     if url in saved:         return saved[url]     page = urllib.urlopen(url).read()     saved[url] = page     return page

pythonic

 import urllib #py2 #import urllib.request as urllib # py3  def cache(func):     saved = {}      def wrapper(url):         if url in saved:             return saved[url]         else:             page = func(url)             saved[url] = page             return page      return wrapper  @cache def web_lookup(url):     return urllib.urlopen(url).read()

用装饰器写代码表面上感觉代码量更多,但是它把缓存相关的逻辑抽离出来了,可以给更多的函数调用,这样总的代码量就会少很多,而且业务方法看起来简洁了。

8、合理使用列表

列表对象(list)是一个查询效率高于更新操作的数据结构,比如删除一个元素和插入一个元素时执行效率就非常低,因为还要对剩下的元素进行移动

names = ['raymond', 'rachel', 'matthew', 'roger',          'betty', 'melissa', 'judith', 'charlie'] names.pop(0) names.insert(0, 'mark')

pythonic

from collections import deque names = deque(['raymond', 'rachel', 'matthew', 'roger',                'betty', 'melissa', 'judith', 'charlie']) names.popleft() names.appendleft('mark')

deque 是一个双向队列的数据结构,删除元素和插入元素会很快

9、序列解包

p = 'vttalk', 'female', 30, 'python@qq.com'  name = p[0] gender = p[1] age = p[2] email = p[3]

pythonic

name, gender, age, email = p

10、遍历字典的 key 和 value

方法一速度没那么快,因为每次迭代的时候还要重新进行hash查找 key 对应的 value。

方法二遇到字典非常大的时候,会导致内存的消耗增加一倍以上

# 方法一 for k in d:     print k, '--->', d[k]  # 方法二 for k, v in d.items():     print k, '--->', v

pythonic

for k, v in d.iteritems():     print k, '--->', v

iteritems 返回迭代器对象,可节省更多的内存,不过在 python3 中没有该方法了,只有 items 方法,等值于 iteritems。

当然还有很多 pythonic 写法,在此不再一一列举,说不定有第二期,欢迎留言。觉得不错就赞一个吧 (^o^)/

猜你喜欢:

长按二维码关注「 一个程序员的微站」 分享技术干货,没有诗和远方

代码这样写更优雅(Python 版)

本文对你有帮助?分享给更多人

原文链接:代码这样写更优雅(Python 版),转载请注明来源!

0