首页 » 漏洞 » 十分钟搞定Keras序列到序列学习(附代码实现)

十分钟搞定Keras序列到序列学习(附代码实现)

 

如何在 Keras 中实现 RNN 序列到序列学习?本文中,作者将尝试对这一问题做出简短解答;本文预设你已有一些循环网络和 Keras 的使用经验。

GitHub:https://github.com/fchollet/keras/blob/master/examples/lstm_seq2seq.py

什么是序列到序列学习?

序列到序列学习(Seq2Seq)是指训练模型从而把一个域的序列(比如英语语句)转化为另一个域的序列(比如法语中的对应语句)。

"the cat sat on the mat" -> [Seq2Seq model] -> "le chat etait assis sur le tapis" 

Seq2Seq 可用于机器翻译或者省去问题回答——通常来讲,它可以随时生成文本。完成这一任务有很多方式,比如 RNN 或一维卷积。本文只介绍 RNN。

次要案例:当输入序列和输出序列长度相同

当输入序列和输出序列长度相同时,你可以通过 Keras LSTM 或者 GRU 层(或者其中的堆栈)简单地实现模型。这一实例脚本中的案例展示了如何教会 RNN 学习添加被编码为字符串的数字:

十分钟搞定Keras序列到序列学习(附代码实现)

一般案例:标准的 Seq2Seq

一般情况下,输入序列和输出序列有不同的长度(比如机器翻译)。这就需要一个更高级的设置,尤其在没有进一步语境的「序列到序列模型」时。下面是其工作原理:

  • 一个 RNN 层(或其中的堆栈)作为「编码器」:它处理输入序列并反馈其内部状态。注意我们抛弃了编码器 RNN 的输出,只恢复其状态。该状态在下一步中充当解码器的「语境」。
  • 另一个 RNN 层作为「解码器」:在给定目标序列先前字母的情况下,它被训练以预测目标序列的下一个字符。具体讲,它被训练把目标序列转化为相同序列,但接下来被一个时间步抵消,这一训练过程在语境中被称为「teacher forcing」。更重要的是,编码器把其状态向量用作初始状态,如此编码器获得了其将要生成的信息。实际上,在给定 targets[...t] 的情况下,解码器学习生成 targets[t+1...],前提是在输入序列上。

十分钟搞定Keras序列到序列学习(附代码实现)

在推理模式中,即当要解码未知的输入序列,我们完成了一个稍微不同的处理:

  1. 把输入序列编码进状态向量
  2. 从大小为 1 的目标序列开始
  3. 馈送状态向量和 1 个字符的目标序列到解码器从而为下一字符生成预测
  4. 通过这些预测采样下一个字符(我们使用 argmax)
  5. 把采样的字符附加到目标序列
  6. 不断重复直至我们生成序列最后的字符或者达到字符的极限

十分钟搞定Keras序列到序列学习(附代码实现)

相同的处理也可被用于训练没有「teacher forcing」的 Seq2Seq 网络,即把解码器的预测再注入到解码器之中。

一个 Keras 实例

让我们用实际的代码演示一下这些想法。

对于实例实现,我们将使用一对英语语句及其法语翻译的数据集,你可以从 http://www.manythings.org/anki/下载它,文件的名称是 fra-eng.zip。我们将会实现一个字符级别的序列到序列模型,逐个字符地处理这些输入并生成输出。另一个选择是单词级别的模型,它对机器学习更常用。在本文最后,你会发现通过嵌入层把我们的模型转化为单词级别模型的一些注释。

这是实例的全部脚本:https://github.com/fchollet/keras/blob/master/examples/lstm_seq2seq.py。

下面是这一过程的总结:

1. 把语句转化为 3 个 Numpy 数组 encoder_input_data、decoder_input_data、decoder_target_data:

  • encoder_input_data 是一个形态的 3D 数组(num_pairs, max_english_sentence_length, num_english_characters),包含一个英语语句的独热向量化。
  • decoder_input_data 是一个形态的 3D 数组(num_pairs, max_french_sentence_length, num_french_characters),包含一个法语语句的独热向量化。
  • decoder_target_data 与 decoder_input_data 相同,但是被一个时间步抵消。decoder_target_data[:, t, :] 与 decoder_input_data[:, t + 1, :] 相同。

2. 在给定 encoder_input_data 和 decoder_input_data 的情况下,训练一个基本的基于 LSTM 的 Seq2Seq 模型以预测 decoder_target_data。我们的模型使用 teacher forcing。

3. 解码一些语句以检查模型正在工作。

由于训练过程和推理过程(解码语句)相当不同,我们使用了不同的模型,虽然两者具有相同的内在层。这是我们的模型,它利用了 Keras RNN 的 3 个关键功能:

  • return_state 构造函数参数配置一个 RNN 层以反馈列表,其中第一个是其输出,下一个是内部的 RNN 状态。这被用于恢复编码器的状态。
  • inital_state 调用参数指定一个 RNN 的初始状态,这被用于把编码器状态作为初始状态传递至解码器。
  • return_sequences 构造函数参数配置一个 RNN 反馈输出的全部序列。这被用在解码器中。
from keras.models import Model from keras.layers import Input, LSTM, Dense # Define an input sequence and process it. encoder_inputs = Input(shape=(None, num_encoder_tokens)) encoder = LSTM(latent_dim, return_state=True) encoder_outputs, state_h, state_c = encoder(encoder_inputs) # We discard `encoder_outputs` and only keep the states. encoder_states = [state_h, state_c] # Set up the decoder, using `encoder_states` as initial state. decoder_inputs = Input(shape=(None, num_decoder_tokens)) # We set up our decoder to return full output sequences, # and to return internal states as well. We don't use the # return states in the training model, but we will use them in inference. decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_inputs,                                     initial_state=encoder_states) decoder_dense = Dense(num_decoder_tokens, activation='softmax') decoder_outputs = decoder_dense(decoder_outputs) # Define the model that will turn # `encoder_input_data` & `decoder_input_data` into `decoder_target_data` model = Model([encoder_inputs, decoder_inputs], decoder_outputs) 

我们用这两行代码训练模型,同时在 20% 样本的留存集中监测损失。

# Run training model.compile(optimizer='rmsprop', loss='categorical_crossentropy') model.fit([encoder_input_data, decoder_input_data], decoder_target_data,          batch_size=batch_size,          epochs=epochs,          validation_split=0.2) 

大约 1 小时后在 MacBook CPU 上,我们已准备好做推断。为了解码测试语句,我们将重复:

  • 编码输入语句,检索初始解码器状态。
  • 用初始状态运行一步解码器,以「序列开始」为目标。输出即是下一个目标字符。
  • 附加预测到的目标字符并重复。

这是我们的推断设置:

encoder_model = Model(encoder_inputs, encoder_states) decoder_state_input_h = Input(shape=(latent_dim,)) decoder_state_input_c = Input(shape=(latent_dim,)) decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_outputs, state_h, state_c = decoder_lstm(    decoder_inputs, initial_state=decoder_states_inputs) decoder_states = [state_h, state_c] decoder_outputs = decoder_dense(decoder_outputs) decoder_model = Model(    [decoder_inputs] + decoder_states_inputs,    [decoder_outputs] + decoder_states) 

我们使用它实现上述推断循环(inference loop):

def decode_sequence(input_seq):    # Encode the input as state vectors.    states_value = encoder_model.predict(input_seq)    # Generate empty target sequence of length 1.    target_seq = np.zeros((1, 1, num_decoder_tokens))    # Populate the first character of target sequence with the start character.    target_seq[0, 0, target_token_index['/t']] = 1.    # Sampling loop for a batch of sequences    # (to simplify, here we assume a batch of size 1).    stop_condition = False    decoded_sentence = ''    while not stop_condition:        output_tokens, h, c = decoder_model.predict(            [target_seq] + states_value)        # Sample a token        sampled_token_index = np.argmax(output_tokens[0, -1, :])        sampled_char = reverse_target_char_index[sampled_token_index]        decoded_sentence += sampled_char        # Exit condition: either hit max length        # or find stop character.        if (sampled_char == '/n' or           len(decoded_sentence) > max_decoder_seq_length):            stop_condition = True        # Update the target sequence (of length 1).        target_seq = np.zeros((1, 1, num_decoder_tokens))        target_seq[0, 0, sampled_token_index] = 1.        # Update states        states_value = [h, c]    return decoded_sentence 

我们得到了一些不错的结果——这在意料之中,因为我们解码的样本来自训练测试。

Input sentence: Be nice. Decoded sentence: Soyez gentil ! - Input sentence: Drop it! Decoded sentence: Laissez tomber ! - Input sentence: Get out! Decoded sentence: Sortez ! 

这就是我们的十分钟入门 Keras 序列到序列模型教程。完整代码详见 GitHub:https://github.com/fchollet/keras/blob/master/examples/lstm_seq2seq.py。

常见问题

1. 我想使用 GRU 层代替 LSTM,应该怎么做?

这实际上变简单了,因为 GRU 只有一个状态,而 LSTM 有两个状态。这是使用 GRU 层适应训练模型的方法:

encoder_inputs = Input(shape=(None, num_encoder_tokens)) encoder = GRU(latent_dim, return_state=True) encoder_outputs, state_h = encoder(encoder_inputs) decoder_inputs = Input(shape=(None, num_decoder_tokens)) decoder_gru = GRU(latent_dim, return_sequences=True) decoder_outputs = decoder_gru(decoder_inputs, initial_state=state_h) decoder_dense = Dense(num_decoder_tokens, activation='softmax') decoder_outputs = decoder_dense(decoder_outputs) model = Model([encoder_inputs, decoder_inputs], decoder_outputs) 

2. 我想使用整数序列的单词级别模型,应该怎么做?

如果你的输入是整数序列(如按词典索引编码的单词序列),你可以通过 Embedding 层嵌入这些整数标记。方法如下:

# Define an input sequence and process it. encoder_inputs = Input(shape=(None,)) x = Embedding(num_encoder_tokens, latent_dim)(encoder_inputs) x, state_h, state_c = LSTM(latent_dim,                           return_state=True)(x) encoder_states = [state_h, state_c] # Set up the decoder, using `encoder_states` as initial state. decoder_inputs = Input(shape=(None,)) x = Embedding(num_decoder_tokens, latent_dim)(decoder_inputs) x = LSTM(latent_dim, return_sequences=True)(x, initial_state=encoder_states) decoder_outputs = Dense(num_decoder_tokens, activation='softmax')(x) # Define the model that will turn # `encoder_input_data` & `decoder_input_data` into `decoder_target_data` model = Model([encoder_inputs, decoder_inputs], decoder_outputs) # Compile & run training model.compile(optimizer='rmsprop', loss='categorical_crossentropy') # Note that `decoder_target_data` needs to be one-hot encoded, # rather than sequences of integers like `decoder_input_data`! model.fit([encoder_input_data, decoder_input_data], decoder_target_data,          batch_size=batch_size,          epochs=epochs,          validation_split=0.2) 

3. 如果我不想使用「teacher forcing」,应该怎么做?

一些案例中可能不能使用 teacher forcing,因为你无法获取完整的目标序列,比如,在线训练非常长的语句,则缓冲完成输入-目标语言对是不可能的。在这种情况下,你要通过将解码器的预测重新注入解码器输入进行训练,就像我们进行推断时所做的那样。

你可以通过构建硬编码输出再注入循环(output reinjection loop)的模型达到该目标:

from keras.layers import Lambda from keras import backend as K # The first part is unchanged encoder_inputs = Input(shape=(None, num_encoder_tokens)) encoder = LSTM(latent_dim, return_state=True) encoder_outputs, state_h, state_c = encoder(encoder_inputs) states = [state_h, state_c] # Set up the decoder, which will only process one timestep at a time. decoder_inputs = Input(shape=(1, num_decoder_tokens)) decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True) decoder_dense = Dense(num_decoder_tokens, activation='softmax') all_outputs = [] inputs = decoder_inputs for _ in range(max_decoder_seq_length):    # Run the decoder on one timestep    outputs, state_h, state_c = decoder_lstm(inputs,                                             initial_state=states)    outputs = decoder_dense(outputs)    # Store the current prediction (we will concatenate all predictions later)    all_outputs.append(outputs)    # Reinject the outputs as inputs for the next loop iteration    # as well as update the states    inputs = outputs    states = [state_h, state_c] # Concatenate all predictions decoder_outputs = Lambda(lambda x: K.concatenate(x, axis=1))(all_outputs) # Define and compile model as previously model = Model([encoder_inputs, decoder_inputs], decoder_outputs) model.compile(optimizer='rmsprop', loss='categorical_crossentropy') # Prepare decoder input data that just contains the start character # Note that we could have made it a constant hard-coded in the model decoder_input_data = np.zeros((num_samples, 1, num_decoder_tokens)) decoder_input_data[:, 0, target_token_index['/t']] = 1. # Train model as previously model.fit([encoder_input_data, decoder_input_data], decoder_target_data,          batch_size=batch_size,          epochs=epochs,          validation_split=0.2) 

原文链接:十分钟搞定Keras序列到序列学习(附代码实现),转载请注明来源!

0